

Neura AD

White Boxing Anaerobic Digestion through Artificial Neural Networks

José Gascão & Milton Fontes

WEX Global 2015 23 - 25 February 2015

Let's model AD!

1st choice: traditional models (ADM1...)

But... How Does Human Brain Learn?

Our key figures 8 M PE served (Water & Wastewater)

More than 30 Anaerobic Digestions (AD) Overall capacity ~ 160,000 m³

More than 20 WWTP with CHP

Maximum energy production potential ~ 110 GWh/yr Energy production in 2013 ~36 GWh Investment ~ 50 M€

The Biogas production black box

A complex system

Lag: 15 to 25 days Hydraulic

Retention Time

Cause-effect relationships difficult to establish

Uncertainty on the effects of a given change

Prediction of an AD plant behavior is often a difficult exercise

Our drive

- Less energy consumption in the treatment process
- More energy production from sewage

Innovative tools to help improve biogas production

Artificial Neural Networks

Linear models have proven difficult to apply to such a complex process like AD

ANN: Computational mathematical models inspired in human brain

ANN: a watch-and-learn process

Neural AD development

FEED VOLATILE SOLIDS (VS)

FEED DRY SOLIDS (DS)

MODEL THE ANN USING ALL AVAILABLE INPUTS

> ELIMINATE LESS SIGNIFICANT INPUTS

> > ORGANIC LOADING RATE

HIDRAULIC RETENTION TIME

MODEL THE ANN WITH DIFFERENT COMBINATIONS OF INPUTS

FEED VOLUME

DIGESTER TEMPERATURE

9

Neural AD so far

6 different WWTP

- Ave (6,000 m³ / 800 kW)
- Norte (13,000 m³ / 720 kW)
- Sul (6,000 m³ / 660 kW)
- Vila Franca (1,800 m³ / 175 kW)
- Guia (21,500 m³ / 2,900 kW)
- Seixal (4,000 m³ / 350 kW)
- 2 years (2013 and 2014)
- 3 different support softwares
- 4 Universities

Neural AD Outputs

Methane Production \mathbf{M}

kWh/day

kWh/day

kWh/day

Our Achievements

Good prediction accuracy

Few input variables needed

More focused WWTP's analytical plans

Increased and stabilized biogas production

Neural AD Quick Decision Tools

13

Neural AD Quick Decision Tools

- 24	С	D	E	F	G	Н	К	L	М	N	0	Р	Q	R	S	Т	U
1	FEED VOLATILE SOLIDS (%VS)	DAILY FEED VOLUME (m3)	DIGESTER TEMPERATURE (ºC)	ORGANIC LOADING RATE (kgVS/m3.d)	DAILY BIOGAS PRODUCTION (m3)			DAILY BIOGAS PRODUCTION (m3)									
2	SL4 %MV	Q _{ent} (m ³)	Temp. (°C)	CMV	$\Omega_{\rm sloges}~(m^3)$	SL4 %MV			1,6			TEMP. (ºC)			34,4		
3	1,6	100	34,4	0,53	714	745											
4	1,6	105	34,4	0,56	715												
5	1,6	110	34,4	0,59	715	740									+		
6	1,6	115	34,4	0,61	716												
7	1,6	120	34,4	0,64	717	735								•			
8	1,6	125	34,4	0,67	718	730											
9	1,6	130	34,4	0,69	718									•			
10	1,6	135	34,4	0,72	719	725							•				
11	1,6	140	34,4	0,75	719								+				
12	1,6	145	34,4	0,77	719	720						• •				•	
13	1,6	150	34,4	0,80	720				+ +	•							
14	1,6	155	34,4	0,83	721	715	+ +										
15	1,6	160	34,4	0,85	722	710											
16	1,6	165	34,4	0,88	725	/10											
17	1,6	170	34,4	0,91	729	705											
18	1,6	175	34,4	0,93	735												
19	1,6	180	34,4	0,96	740	700											
20	1,6	185	34,4	0,99	737											•	
21	1,6	190	34,4	1,01	720	695 +		115		13	E	155		17	-	1	05
Ð	and an a start of	wence com	34,4	1,04	698	- 33		115		1:		155		17:		1	

Next Steps

Application in other WWTP

Expansion of current datasets

Establish a common

methodology to:

- Determine correct input variables
- Data treatment
- Finding the best ANN

PRODUCT:

<u>Neural AD – a control panel for plant operators</u>

Thank you, Partners!

- SANEST (João Santos Silva / Catarina Correia)
- SIMARSUL (Lisete Epifâneo)
- SIMTEJO (Diana Figueiredo)
- SIMRIA (Milton Fontes / Margarida Esteves)
- Aguas do Noroeste (Adriano Magalhães)
- AdP Serviços (Nuno Brôco / José Gascão)

The Schools, the teachers and the students involved in Neural AD

- ISEP Instituto Superior de Engenharia Porto (Prof. Jaime Gabriel Silva ISED Instituto Superior de ● MSc students Hélder Rocha / Joana Brandão)
- IST Instituto Superior Técnico (Prof. Helena Pinheiro MSc students Raquel ٠ Pires / Liliana Fernandes)
- UNL Faculdade Ciências e Tecnologia da Universidade Nova de Lisboa ۲ (Prof. Leonor Amaral - MSc student Pedro Pinto)
- UM Universidade do Minho (Dr^a Luciana Pereira MSc student Catarina Carreira) 🏹 ٠

TÉCNICO LISBOA

