

CASHE 14 - 15 February, 2019

 Conference: Academic Success in Higher Education

 1

Promoting coding best-practices by extending

Moodle’s VPL

Marílio Cardoso
ISEP - Polytechnic of Porto

(Portugal)

joc@isep.ipp.pt

Rui Marques
ISEP - Polytechnic of Porto

(Portugal)

rfm@isep.ipp.pt

António Vieira de Castro
ISEP - Polytechnic of Porto

(Portugal)

avc@isep.ipp.pt

Abstract - This paper translates an effort of improving

VPL functionalities in several aspects and fields, that may

be considered conceptual. The context is APROG (unit

course of Algorithm and Programming), at School of

Engineering (ISEP), Polytechnic Institute of Porto

(P.PORTO), that uses VPL to automate, normalize and

simplify student’s tests of a specific set of Algorithms.

These tests are factual (built in on VPL), which tests if

results meet requirements. Extended VPL tests validate

format, content, and specific exercise check-points. The

overall objective is to help the student achieve the overall

solutions that includes class oriented, concept followed by

student deployment, with VPL validation of results, but

also, design. In simple terms, not only if the exercise is

solved, but also if it is solved following the class resolution

guidelines.

Keywords – Coding Standards, Java Best Practices, Software

Development, VPL.

INTRODUCTION

VPL stands for Virtual Programming Lab [1], it's

responsible for managing programming assignments in

Moodle (a popular support tool for teachers and students in

academic environment). It operates as a module and it's

highly integrated allowing: students to create, edit and run

source code directly on their browser window; teachers and

students to debug and run interactively their code; teachers

can review students results; some types of plagiarism control

(disabling copy-paste and validating similarity). An evaluate

procedure can be ran to deliver a percentual evaluation.

Evaluation can be incremental, decremental or even limited

to a maximum amount of tests that can occur [2].

VPL is a rather robust technology, with a group of tools (or

subsystems) that allow arbitrary code to run, without any

server administration intervention, in a safe and isolated

manner - relying in a Jail Server - this way user test their

algorithms, while other system functions, communications

and user data is not accessed. This is achieved by a set of

temporary generated features that Jail Server uses in order to

maintain VPL user data, without osmosis with the actual

system, while using it's binary executables, it's library class

files and remaining files that may be required by the selected

compiler.

In APROG's case a Java compiler is used [3]. This

operation needs a compiler and a runtime binary ("javac" and

"java" respectively).

The Moodle module encapsulates the compiler program

through a text string, that is converted into a script and then

executed in run-time (lines 3 through 5). These lines contain

the mentioned compiler and runtime library.

This type of "rendering" allows code sanitation but

implements some limitations, each exercise must have it's

own set of configuration and test cases files. In the test case

example, this is a desired feature, in the configurations point

of view, where design tests are assembled, this is a

tremendous inefficiency. Each exercise has the same
configuration framework to validate concept and design.

However, if a change is made, improvement or bug

correction, this correction, however simple, must be

implemented in every exercise. Which leads to a "not-so-

framework", were exercise #1 has implemented design

checks A and B, while #2 has A.1 and C, and so forth, making

version control a type of nightmare.

This process has now evolved to a centralized framework

of design concept checks, that can be implemented

horizontally in the VPL platform, specific configuration done

one file at a time (as intended), while updates, upgrades can

be done in a centralized manner.

Another VPL limitation is the inability to render visual

Graphic User Interface libraries (Java Swing or Java FX for

instances), disabling such features, and redirecting

input/output through console window. This limitation is

treated as a code re-write request, into making the code work

with console I/O - Readers/Writers (Java Scanner and System

Out).

This paper describes the evolution in this process and it's

state of art.

METHODOLOGY

VPL is divided into four main files for each exercise:

vpl_run.sh, vpl_debug.sh, vpl_evaluate.sh and

vpl_evaluate.cases. In this scenario the attention is brought

over vpl_run.sh and vpl_evaluate.cases.

CASHE 14 - 15 February, 2019

 Conference: Academic Success in Higher Education

 2

The vpl_evaluate.cases is a simple file that may be complex

to manage, which regards the way the program is processed,

input stream and output sequence [4].

The output is validated in a form and function type of

validation (Carbon-Copy Validation), requiring that the

student supplies it's result as-is. This is a negative point for

this technology, as the algorithm may be correct, but if

presented in a different way from the one provided, a negative

result is yield.

In the vpl_evaluation.cases it's possible to add Regular

Expressions (RegEx) for the results window. This plasticize

the process of validating results, however it is not a perfect

fit. Considering the following scenario where the user

submits the amount of numbers to be entered, and them

prompts for that exact amount, ordering the array

(descendant), and then rotating it to the right:

output =

How many numbers?

Number 1:

Number 2:

Number 3:

4 3 2

2 4 3

output = /[\r\n][\w ?]*[\r\n]([A-z 1-3:]*[\r\n]){3}([0-9

]{5}[\r\n]){1}([0-9]{5})/

The RegEx validates effectively the position of the

characters, number of occurrences and the places where

specific characters should not occur. It also validates that the

maximum number of characters to be outputted. This solution

suits VPL needs in order to allow a plastic input messages

and methods, but on the other hand, it does represent

additional problems in managing exact results, as it does not

integrate with supplied arguments (i.e. amount of

"Number”’s' to be inserted) and also the expression must be

designed with explicit results:

output = /[\r\n][\w ?]*[\r\n]([A-z 1-3:]*[\r\n]){3}(4 3

2[\r\n]){1}(2 4 3{1})/

Which can be roughly translated into applying specific

result set and input text, as VPL does not allow a hybrid

approach Regular Expression + Carbon-Copy Validation.

In such a context, our strategy reverted into Carbon-Copy

Validation followed by exercise focused resolution technique

control. This applies to the following control points:

• Java Class name and filename must match;

• Alerting for the forbidden use of Java Swing or

Java FX;

• Search for a specific function name;

• Account total number of lines where the program

is expected to run using less lines;

• Number of functions created for this particular

task;

• Number of Constants;

• Number of "return”’s in a given function name;

• Number of lines of a specific function name;

The approach is to replace vpl_run.sh (in Fig. 1) with a

particular set of commands that could scrutinize student code

prior to runtime. This way, customizations could be applied,

within Moodle/VPL program flow.

In the actual solution, we had to centralize code

development, opting for a GIT format of deployment,

unifying the program. Actual developments entitled "VPL

Extensibility App" are in it's 1.0.2 version, and require a

rather simpler model in "vpl_run.sh", composed by following

sections: static declaration section, version management and

file download section, parameters override section and,

finally, validation, compile and run section.

This new strategy simplifies overall management of

validation code, promoting adding new features while

maintaining earlier exercises working. Also permits painless

debugging of new versions by creating a local "vpl.version"

that points to the new/unstable version.

CONCLUSIONS

The core operation of VPL is already a good starting point,

merging teachers and students in one framework, allowing

them to share, test and fine tune APROG exercises. This is

already a very good thing. What we have tried, is to improve

that functionality into an extended array of tools that can

provide pre-compile, runtime tests, that suite each exercise

specification. Improving class integration with VPL, better

evaluation of APROG subjects with greater precision, and

overall improvement powered by the continuous feedback

provided.

REFERENCES

[1] J. Rodríguez-del-Pino, E. Rubio-Royo and Z.

Hernández-Figueroa, "A Virtual Programming Lab for

Moodle with automatic assessment and anti-plagiarism

features," International Conference on e-Learning, e-

Business, Enterprise Information Systems, & e-

Government, 2012.

[2] D. Thiébaut, "Automatic evaluation of computer

programs using Moodle's virtual programming lab (VPL)

plug-in.", Journal of Computing Sciences in Colleges 30.6,

pp. 145-151, 2015.

[3] M. Cardoso, A. Vieira de Castro, Á. Rocha, "Integration

of Virtual Programming Lab in a process of teaching

programming EduScrum based", 13th Iberian Conference

on Information Systems and Technologies (CISTI),

Cáceres, Spain, 2018.

[4] A. V. Wanhenheim, J. E. Martina, R. L. Cancian and J.

C. Dovichi, Developing Programming Courses with

Moodle and VPL - The Teacher’s Guide to the Virtual

Programming Lab, Bookess, 2015.

	Introduction
	Methodology
	Conclusions
	References

